Literature Review: Malathion Insecticide Resistance Test Against Aedes aegpti Mosquitoes Using the CDC Bottle Bioassay Method
DOI:
https://doi.org/10.53089/medula.v14i10.1376Keywords:
Aedes aegypti, CDC bottle bioassay, malathion, resistanceAbstract
Dengue is an infectious disease transmitted by the Aedes aegypti mosquito, which breeds rapidly in Indonesia's tropical environment, increasing the risk of spreading this disease. Vector control using malathion insecticide can be effective, but repeated use and inappropriate dosage can cause resistance in mosquitoes which ultimately increases the risk of dengue infection. CDC Bottle Bioassay is a test method for evaluating mosquito resistance to insecticides with a standardized procedure and is carried out using bottles containing insecticides with different diagnostic doses. Research using this method shows that Aedes aegypti mosquitoes in various locations show resistance to malathion at certain doses and tolerance at other doses. Several studies have also shown that mosquitoes exposed to malathion show categories of resistance or tolerance based on the mortality rate recorded during the test. Malathion, which is a class of organophosphorus insecticides, works by irreversibly binding to acetylcholinesterase and effectively kills mosquitoes, but repeated use can trigger resistance. Factors influencing resistance include biological factors such as migration, operational factors such as insecticide dosage and application, as well as genetic factors associated with the resistant allele. If mosquitoes carrying resistant alleles move or interbreed, this can increase the resistance status in an area, which is seen in Aedes aegypti populations in several regions of the world.
References
Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM,Barker CM et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 2015; 4: 1-18.
Falah AA, Astuti RR, Setiawan DS. Analysis Resistance of Malathion and Cypermethrin Insecticide on Aedes aegypti (Linnaeus, 1762) from Kaliwungu Kudus and Kotagede Yogyakarta Using CDC Bottle Bioassay. BIO Web Conf. 2023; 94: 1-11
World Health Organization. Dengue and severe dengue. Geneva: WHO;2024 [diperbarui 2024 April 23; diakses 2024 Des 15] Tersedia dari: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
Kampango A, Furu P, Sarath DL, Haji KA, Kondrasen F, Schioler KL et al. Risk factors for occurrence and abundance of Aedes aegypti and Aedes bromeliae at hotel compounds in Zanzibar. Parasites and Vectors. 2021; 14(1): 544
Deng SQ, Yang X, Wei Y, Chen JT, Wang XJ, Peng HJ. A review on dengue vaccine development. In Vaccines.2020; 8(1):1-13
Rahayu A, Saraswati U, Supriyati E, Kumalawati DA, Hermantara R, Rovik A et al. Prevalence and distribution of dengue virus in Aedes aegypti in Yogyakarta city before deployment of wolbachia infected Aedes aegypti. International Journal of Environmental Research and Public Health. 2019;16(10):1-12
Riyadi S, Baskoro T, Satoto T. Penggunaan insektisida dan uji kerentanan nyamuk Aedes aegypti di daerah endemis di Kabupaten Purbalingga. Berita Kedokteran Masyarakat. 2017;33(10): 459-466
Akollo IR, Satoto T, Rahmah S. Status Resistensi Nyamuk Aedes aegypti terhadap Malation dan Mutasi Gen Ace-1 di Kota Ambon. Jurnal Vektor Penyakit. 2020;14(2): 119–128.
Novarianti, Syukur DS, Djaafar T. Resistensi Aedes aegypti Terhadap Malation di Kecamatan Palu Utara Provinsi Sulawesi Tengah. Jurnal Promotif Preventif. 2024;7(5): 1042-1049
Satoto TBT, Alvira N, Wibawa T, Diptyanusa A. Controlling Factors that Potentially against Transmission of Dengue Hemorrhagic Fever at State Elementary Schools in Yogyakarta. Kesmas: National Public Health Journal. 2017;11(4): 178-184
Engdahl C, Knutsson S, Fredriksson SA, Linusson A, Bucht G, Ekstrom F. Acetylcholinesterases from the disease vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and comparisons with vertebrate orthologues. PLOS One.2015;10(10): 1-17
Kawada H, Higa Y, Kasai S. Reconsideration of importance of the point mutation L982W in the voltage-sensitive sodium channel of the pyrethroid resistant Aedes aegypti (L.) (Diptera: Culicidae) in Vietnam. PLOS ONE. 2023; 18
CDC. Global Manual for Evaluating Insecticide Resistance Using the CDC Bottle Bioassay. Unites States: Centers For Disease Control and Prevention; 2023
Sartika A, Nofita E, Asri E. Status Kerentanan Nyamuk Aedes Aegypti terhadap Malathion 5% dan Alfa-sipermetrin 0,025% di Wilayah Kerja Puskesmas Belimbing Kecamatan Kuranji Kota Padang. Jurnal Kesehatan Andalas. 2020;9(1): 22-28
Sutarto, Syani. Resistensi Insektisida pada Aedes aegypti. J Agromedicine Unila.2018;5(2): 582-586
Rocha HDR, Paiva MHS, Silva NM, Ana PAC, Denise RR, Aires JF et al. Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides. Acta Tropica.2015; 152:66-73.
Morales D, Ponce P, Cevallos V, Espinosa P, Vaca D, Quezada W. Resistance status of Aedes aegypti to deltamethrin, malathion, and temephos in Ecuador’, Journal of the American Mosquito Control Association. 2019; 35(2):113-122.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Medical Profession Journal of Lampung

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.