Effect of Giving Black Cumin (Nigella sativa) Seed Extract on Reducing Blood Sugar Levels of White Rats (Rattus norvegicus) Induced by Streptozotocin

Authors

  • Shania Evingelinda Universitas Lampung
  • Evi Kurniawati
  • Anggraeni Janar Wulan Universitas Lampung
  • Iswandi Darwis

DOI:

https://doi.org/10.53089/medula.v14i1.860

Keywords:

Keywords: black cumin seed extracts, diabetes mellitus, streptozotocin

Abstract

Diabetes mellitus (DM) is a heterogeneous disease, characterized by chronic hyperglycemia caused by defects in insulin secretion, insulin action, or both. However, in diabetes mellitus therapy, oral hypoglycemia drugs cause side effects in form of digestive tract complaints in patients, hypoglycemia,and weight loss. Black cumin seed extract as a herbal therapy can reduce blood glucose levels. This study aims to determine effect of administering Black Cumin (Nigella sativa) extract in reducing blood glucose levels in white rats induced by streptozotocin. This study used a pre and post test control group design with a sample size of 32 white rats divided into 4 groups with treatment for 21 days. The groupK- was given 2 ml of distilled water. The group K+ was given an injection of 20 mg/kgBW streptozotocin. Thegroup P1 was given an injection of streptozotocin 20 mg/kgBW and metformin 40 mg/kgBW. Thegroup P2 was given an injection of 20 mg/kgBWstreptozotocin and 200 mg/kgBW black cuminseed extract. Assessment of blood glucose levels is carried out using a glucometer. The results of the difference in the mean pre and post test blood glucose levels at K1, K2, P1, and P2 respectively were 2,34 mg/dl, 157,4 mg/dl, 251,33 mg/dl, and 185,33 mg/dl. This study used a one-way ANOVA parametric test (p<0.05) and continued with the post-hoc Bonferroni test (p<0.05). Administration of black cumin seed extract (Nigella sativa) can have effect of reducing blood glucose levels in white rats (Rattus norvegicus) induced by streptozotocin.

Author Biographies

Shania Evingelinda, Universitas Lampung

 

 

Evi Kurniawati

 

 

Anggraeni Janar Wulan, Universitas Lampung

 

 

Iswandi Darwis

 

 

References

World Health Organization (WHO). Global report on diabetes. France : WHO Press; 2016.

Santoso SD, Imam S. Komparasi efek pemberian minyak jintan hitam (Nigella sativa) dengan minyak zaitun (Olea europea) terhadap penurunan Glukosa darah pada mencit (Mus musculus) strain balb/c [disertasi]. Sidoarjo: Universitas Maarif Hasyim Latif; 2017.

Saputri, GZ, Akrom, Muhlis M, Muthoharoh A. Modifikasi disertai pesan motivasional farmasis dalam peningkatan perilaku dan outcome klinik pasien diabetes melitus dengan hipertensi rawat jalan di RSUD Panembahan Senopati, Bantul. Jurnal Farmasi Klinik Indonesia. 2019;8(1): 31–41.

Gumantara MPB, Oktarlina RZ. Perbandingan Monoterapi dan kombinasi terapi sulfonilurea-metformin terhadap pasien diabetes melitus tipe 2. Majority FK Unila. 2017;6(1): 56-67.

Ningsih IY. Perbandingan monoterapi dan kombinasi terapi sulfonilurea-metformin terhadap pasien diabetes melitus tipe 2 [skripsi]. Jember: Universitas Jember; 2015.

World Health Organization (WHO). Traditional medicine strategy. China : WHO Press; 2013.

Farkhondeh T, Samarghandian S, Borji A. Tinjauan tentang efek kardioprotektif dan anti-diabetes dari thymoquinone. J. Trop. Med. 2017;10 : 849–854.

Abbasnezhad A. Nigella sativa seed decreases endothelial dysfunction in streptozotocin-induced diabetic rat. AJP. 2016;5(4): 333-340.

Benhaddou-Andaloussi A, Martineau L, Vuong T, Meddah B, Madiraju P, Settaf A, et al. The in vivo antidiabetic activity of Nigella sativa is mediated through activation of the AMPK pathway and increased muscle GLUT4 content; 2011 [disitasi tanggal 22 Oktober 2020]. Tersedia dari: https://www.hindawi.com

Wu J, dan Yan L. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2015;8: 181-188.

Ismail M, Al-Naqeep G, Chan KW. Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Radic Biol Med. 2010;48(5): 664–672.

Moibi JA, Gupta D, Jetton TL, Peshavaria M, Desai R, Leahy JL. Peroxisome proliferator–activated receptor-ã regulates expression of PDX-1 and NKX6.1 in IJINTAN HITAM-1 cells. Pubmed Article. 2010;56(1): 88-95.

Sangi SM, Mansour IS, Mohammed FA, Elsamoual IA, Soad SA. Antihyperglycemic effect of thymoquinone and oleuropein, on streptozotocin-induced diabetes mellitus in experimental animals. PMC Article Pharmacogn Mag. 2015; 11(2): 251–257.

Mohebbati R, dan Abbasali A. Effecs of nigella sativa on endothelial dysfunction in diabetes mellitus. Iran: Elsevier BV; 2020.

Wang YW, He SJ, Feng X, Cheng J, Luo YT, Tian L, et al. Metformin: a review of its potential indications. China: PMC Art; 2017.

Evaul K, Hammes SR. Cross-talk between g protein-coupled and epidermal growth factor receptors regulates gonadotropin mediated steroidogenesis in leydig cells. J. Biol. Chem. 2008;283(41): 27525-27533.

Finlay TM, Abdulkhalek S, Gilmour A. Thymoquinone-induced Neu4 sialidase activates NFkappaB in macrophage cells and proinflammatory cytokines in vivo. Glycoconj J. 2010;27(6): 583–600.

Yu S, Kim S. The thymoquinone-induced production of reactive oxygen species promotes dedifferentiation through the ERK pathway and inflammation through the p38 and PI3K pathways in rabbit articular chondrocytes. IJMM. 2015;35(2): 325-332.

Stewart AF, Hussain MA, Ocana AG, Vasavada RC, Bhusnan A, Bernal-Mizrachi et al. Human a-cell proliferation and intracellular signaling. Diabetes. 2013;64: 1872-1885.

Liu C, Zhang M, Hu M, Guo H, Li J, Yu Y, et al. Increased glucagon-like peptide-1 secretion may be involved in antidiabetic effects of gijintan hitamenosides. J Endocrinology. 2013;43(11): 185-196.

Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6): 819– 837.

Maruthur NM, Tseng E, Huftless S, Wilson LM, Cuervo CS, Berger Z, et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2016;164(11): 740-751.

Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Farmakokinetik klinis metformin. Clin Pharmacokinet. 2011;50(2): 81–98.

Takane H, Shikata E, Otsubo K, Higuchi S, Ieiri I. Polimorfisme pada pengangkut kation organik manusia dan aksi metformin. Farmakogenomik. 2008;9(2): 415–422.

El-aaraq B, Hussein A, Ibrahim W, Zahran M. Thymoquinone improves anti-diabetic activity of metformin in streptozotocin-induced diabetic male rats. J Diabetes Metab. 2017;(8)12: 2-8.

Bamosa A, Kaatabi H, Badar A, Akram AK, Elq AA, Hozaifa BA et al. Nigella sativa: a potential natural protective agent against cardiac dysfunction in patients with type 2 diabetes mellitus. JFCM. 2015;22(2): 88–95.

Nehar S, Kumari M. Ameliorating effect of Nigella sativa oil in thioacetamide-induced liver cirrhosis in albino rats. India J Pharm Edu Res. 2013;2(47): 135-139.

Mahmoud YK, Saleh SY, Abd El Rehim, Ibrahim AI. Biochemical efficacy of nigella sativa oil and metformin on induced diabetic male rats [Tesis]. Egypt : Suez Canal University; 2014

Published

2024-01-26

How to Cite

Evingelinda, S., Kurniawati, E., Janar Wulan, A., & Darwis, I. (2024). Effect of Giving Black Cumin (Nigella sativa) Seed Extract on Reducing Blood Sugar Levels of White Rats (Rattus norvegicus) Induced by Streptozotocin. Medical Profession Journal of Lampung, 14(1), 12-19. https://doi.org/10.53089/medula.v14i1.860

Issue

Section

Artikel

Most read articles by the same author(s)