Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 (CRISPR-CAS9) Gene Editing Technique as A Therapy for Inherited Genetic Diseases

Authors

  • Suryadi Islami Parasitology Department, Faculty of Medicine, University of Lampung
  • Rais Amaral Haq Faculty of Medicine, University of Lampung
  • Nayla Nadhifa Arianto Faculty of Medicine, University of Lampung
  • Diana Larisa Sabina Faculty of Medicine, University of Lampung

DOI:

https://doi.org/10.53089/medula.v14i2.999

Keywords:

Gene editing, CRISPR-Cas9, Genetic therapy, Congenital genetic diseases

Abstract

The development of therapy for inherited genetic diseases using CRISPR-Cas9 technology has shown significant progress. This article discusses the history and working principles of CRISPR-Cas9, highlighting its applications in the therapy of inherited genetic diseases. Current research focuses include diseases such as cystic fibrosis, thalassemia, and Duchenne muscular dystrophy. Genetic therapy with CRISPR-Cas9 involves editing specific genes to correct disease-causing mutations, opening up opportunities for more effective treatments. Regarding the use of this technique, there are various difficulties, such as potential off-target effects, ethical issues, and long-term safety. However, efforts continue to be made to improve the specificity and accuracy of CRISPR-Cas9 so that the development of effective delivery methods and improving safety has become a major focus of research. Potentially, CRISPR-Cas9 could become a more specific and personalized genetic therapy, opening up opportunities to treat genetic diseases at the molecular level and providing alternative therapies for diseases that were previously difficult to treat. In addition, this technology has the potential for early prevention of genetic diseases and the development of more affordable gene therapies. Interdisciplinary collaboration is key in optimizing the potential of CRISPR-Cas9 to ensure the development of genetic disease therapies that are ethical and beneficial to human health in the future.

References

Jiang F, Doudna JA. CRISPR–Cas9 Structures and Mechanisms. Annu Rev Biophys. 2017;46(1):505-529. doi:10.1146/annurev-biophys-062215-010822

Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther. 2021;29(2):571-586. doi:10.1016/j.ymthe.2020.09.028

Jackson M, Marks L, May GHW, Wilson JB. The genetic basis of disease. Essays Biochem. 2018;62(5):643-723. doi:10.1042/EBC20170053

Salem MSZ. Pathogenetics. An introductory review. Egypt J Med Hum Genet. 2016;17(1):1-23. doi:10.1016/j.ejmhg.2015.07.002

Tyler C, Edman JC. Down syndrome, Turner syndrome, and Klinefelter syndrome: primary care throughout the life span. Prim Care Clin Off Pract. 2004;31(3):627-648. doi:10.1016/j.pop.2004.04.006

Yeoh C, Teng H, Jackson J, et al. Metabolic Disorders and Anesthesia. Curr Anesthesiol Rep. 2019;9(3):340-359. doi:10.1007/s40140-019-00345-w

Janssens ACJW, Van Duijn CM. Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet. 2008;17(R2):166-173. doi: 10.1093/hmg/ddn250

Kohn DB. Gene therapy for blood diseases. Curr Opin Biotechnol. 2019;60:39-45. doi: 10.1016/j.copbio.2018.11.016

Marchetti M, Faggiano S, Mozzarelli A. Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency. Curr Med Chem. 2022;29(3):489-525. doi: 10.2174/0929867328666210526144654

Wiekmeijer AS, Pike-Overzet K, IJspeert H, et al. Identification of checkpoints in human T-cell development using severe combined immunodeficiency stem cells. J Allergy Clin Immunol. 2016;137(2):517-526.e3. doi:10.1016/j.jaci.2015.08.022

Savić N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 2016;168:15-21. doi:10.1016/j.trsl.2015.09.008

Rasul MF, Hussen BM, Salihi A, et al. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer. 2022;21(1):64. doi:10.1186/s12943-021-01487-4

Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429-5433. doi:10.1128/jb.169.12.5429-5433.1987

Mojica FJM, Díez-Villaseñor C, Garcı́a-Martı́Nez J, Soria E. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution. 2005; 60(2):174–82. doi: 10.1007/s00239-004-0046-3

Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 2016;539(7630):479-479. doi: 10.1038/nature.2016.20988

Tavakoli K, Pour-Aboughadareh A, Kianersi F, Poczai P, Etminan A, Shooshtari L. Applications of CRISPR-Cas9 as an Advanced Genome Editing System in Life Sciences. BioTech. 2021;10(3):14. doi:10.3390/biotech10030014

Uddin F, Rudin CM, Sen T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front Oncol. 2020;10:1387. doi: 10.3389/fonc.2020.01387

Stoltz DA, Meyerholz DK, Welsh MJ. Origins of Cystic Fibrosis Lung Disease. Longo DL, ed. N Engl J Med. 2015;372(4):351-362. doi:10.1056/NEJMra1300109

Smirnikhina SA, Kondrateva EV, Adilgereeva EP, et al. P.F508del editing in cells from cystic fibrosis patients. Hu W, ed. PLOS ONE. 2020;15(11):e0242094. doi: 10.1371/journal.pone.0242094

Kirschner J, Cathomen, T. Gene therapy for monogenic inherited disorders—opportunities and challenges. Dtsch Arztebl Int. 2020; 117: 878–85. doi: 10.3238/arztebl.2020.0878

Tucci F, Scaramuzza S, Aiuti A, Mortellaro A. Update on Clinical ex vivo hematopoietic stem cell gene therapy for inherited monogenic diseases. Molecular Therapy. 2021;29(2):489–504. doi: 10.1016/j.ymthe.2020.11.020

Simanjuntak, J. G., Miftahudin, I., & Vuttipongchaikij, M. A. P. D. S. Transformation of Rice Calli With CRISPR- Cas9 Constructs to Edit the Yield-Related Genes. IPB University. 2021 [thesis].

Advenita, V. E. S. R., Mevotema, C., Situmorang, I. A., Haris, L., & Irawati, W. The Potency of Vitamin C in Tomato Plant for the Result of Genetically Modified Lanceolate Gene Through Agrobacterium Tumefaciens Using CRISPR-CAS 9. Jurnal Biologi Tropis. 2023; 23(1):443-450. doi: 10.29303/jbt.v23i1.4682

Sophia, S., Antony, M., Ashan, M. A., Fadhullah, H., & Jannah, R. M. Metode CRISPR/CAS dan Minimalisasi Off-Target. Agriculture and Biological Technology. 2023; 1(1):17-30. doi: 10.61761/agiotech.1.1.17-30

Kesuma, A. A., Nopitasari, S., Yoshioka, Y., Matsumoto, S., & Semiarti, E. Phenotype and genotype characterization of Phalaenopsis amabilis (L.) Blume Orchid Transformant Harboring Construct UBI:: Cas9:: U3:: PDS3. Jurnal Hortikultura Indonesia. 2020; 11(3): 212-220. doi: 10.29244/jhi.11.3.212-220

Zhan T, Rindtorff N, Betge J, Ebert M, Boutros M. CRISPR/Cas9 for cancer research and therapy. Seminars in Cancer Biology. 2019; 55:106–19. doi: 10.1016/j.semcancer.2018.04.001

Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, et al. Efficient and Allele-Specific Genome Editing of Disease LOCI in human IPSCs. Molecular Therapy. 2015; 23(3):570–7. doi: 10.1038/mt.2014.226

Schwank G, Koo B, Sasselli V, Dekkers JF, Heo I, Demircan T, et al. Functional repair of CFTR by CRISPR/CAS9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013; 13(6):653–8. doi: 10.1016/j.stem.2013.11.002

Mendell JR, Rodino‐Klapac LR. Duchenne muscular dystrophy: CRISPR/Cas9 treatment. Cell Research. 2016; 26(5):513–4. doi: 10.1038/cr.2016.28

Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016; 351(6271):400-403. doi: 10.1126/science.aad5725

Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-CAS9 gene editing for sickle cell disease and Β-Thalassemia. The New England Journal of Medicine. 2021; 384(3):252–60. doi: 10.1056/nejmoa2031054

Traxler EA, Yao Y, Wang YD, Woodard KJ, Kurita R, Nakamura Y, et al. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nature Medicine. 2016; 22(9):987–90. doi : 10.1038/nm.4170

Zhang XH, Tee LY, Wang X, Huang Q, Yang S. Off-target effects in CRISPR/CAS9-mediated genome engineering. Molecular Therapy - Nucleic Acids. 2015; 4:e264. doi: https://doi.org/10.1038/mtna.2015.37

Supit A. Improving the Function of CRISPR-CAS9 for Genome Editing Therapy: Editing The Editor. Jurnal Bioteknologi Dan Biosains Indonesia. 2017; 4(1):44. doi: 10.29122/jbbi.v4i1.2068

Adikusuma F, Williams N, Grützner F, Hughes J, Thomas PQ. Targeted deletion of an entire chromosome using CRISPR/CAS9. Molecular Therapy. 2017; 25(8):1736–8.doi: 10.1016/j.ymthe.2017.05.02

Published

2024-02-13

How to Cite

Islami, S., Haq, R. A., Arianto, N. N., & Sabina, D. L. (2024). Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 (CRISPR-CAS9) Gene Editing Technique as A Therapy for Inherited Genetic Diseases. Medical Profession Journal of Lampung, 14(2), 334-342. https://doi.org/10.53089/medula.v14i2.999

Issue

Section

Artikel

Most read articles by the same author(s)