Tuberculosis (TBC) and Human Immunodeficiency Virus (HIV) Collaboration

Authors

  • Yona Arisena Magdalena Silitonga
  • Intanri Kurniati
  • Retno Ariza
  • Mukhlis Imanto
  • Jhond Fatriyadi S

DOI:

https://doi.org/10.53089/medula.v9i2.269

Keywords:

Human immunodeficiency virus (HIV), retroviral, tuberculosis (TBC),

Abstract

Tuberculosis (TBC) is becoming one of the highest causes of death in the world. Tuberculosis is caused by Mycobacterium tuberculosis that is transmitted via droplet originating from tuberculosis patients. It is estimated that one-third of people in the world have been infected by tuberculosis, but only 10-20% of people will show the symptoms. Symptoms that can arise in tuberculosis are such as bleeding cough, weight loss, night sweats, chest pain, shortness of breath and weakness. Meanwhile, human immunodeficiency virus (HIV) is a retrovirus-famili because of its ability to convert the RNA genome into DNA. HIV transmission occurs due to the entry of this virus into the body through body fluids of people who are already infected by HIV. Both of these infectious diseases alike because both of them can cause a decrease in immune system activities in the body of the sufferer. Collaboration of both diseases is common and is a deadly combination because it interacts with each other in all aspects of the disease, ranging from pathogenesis, epidemiology, clinical manifestations, treatment and prevention. Tuberculosis is also a leading cause of death in HIV-positive patients. In 2016 in Indonesia, there are found 360,565 cases of TBC, with 14% of them are also known to suffer from HIV-positive. The results of the study suggest that there is a mutual relationship between the two diseases in causing a clinical symptoms through decreased activity of the body's immune system.

References

PDPI. Tuberkulosis Pedoman Diagnosis dan Penatalaksanaan di Indonesia [Internet]. Jakarta: Persatuan Doter Paru Indonesia; 2006

Cliff JM, Kaufmann Stefan, McShane H, Helden P Van, Garra AO. The Human Immune Response to Tuberculosis and Its Treatment : A View From The Blood. 2015;264:88-102.

WHO. Global Tuberculosis Report 2017. Switzerland: World Health Organization; 2017.

Kemenkes RI. Data Dan Informasi Profil Kesehatan Indonesia 2016. Jakarta: Kementerian Kesehatan Republik Indonesia; 2017.

Jenderal D, Penyakit P, Penyehatan DAN, Kesehatan K, Indonesia R. TATA LAKSANA KLINIS.; 2012.

WHO. Global Health Sector Strategy on HIV 2016-2021. Switzerland: World Health Organization; 2016.

Friedland G, Churchyard GJ, Nardell E. Tuberculosis and HIV Coinfection : Current State of Knowledge and Research Priorities. J Infect Dis. 2017;196:3-5.

Rottenberg ME, Pawlowski A, Jansson M, Sko M. Tuberculosis and HIV Co-Infection. PLoS One. 2012;8(2):1-7.

Fauci A, Braunwald E, Kasper D, Hauser S, Longo D, Jameson J L, editor. Harrison’s Principles of Internal Medicine. Edisi ke 17. New York: McGraw - Hill Medical; 2008.

Carroll KC, Butel J, Morse S, Mietzner T. Jawetz, Melnick, Adelberg’s Medical Microbiology. Edisi ke 27. New York: Mc Graw Hill Education; 2016.

Delogu G, Sali M, Fadda G. The Biology of Mycobacterium Tuberculosis Infection. Mediterr J Hematol Infect Dis. 2013;5(1). doi:10.4084/MJHID.2013.070.

Universitas Indonesia. Mikrobiologi Kedokteran. Jakarta: Binarupa Aksara; 2014.

Misnadiarly, Djajaningrat H. Mikrobiologi Untuk Klinik Dan Laboratorium. I. Jakarta: Rineka Cipta; 2014.

Amin Z, Bahar A. Tuberkulosis Paru. Dalam: Buku Ajar Ilmu Penyakit Dalam. Edisi ke 4. Jakarta: Interna Publishing; 2014. hlm. 863-872.

Barrera L, Huygen K. A Marked Difference in Pathogenesis and Immune Response Induced by Different Mycobacterium tuberculosis genotypes. Blackwell Publ Ltd, Clin Exp Immunol. 2003;133:30-37.

Chackerian AA, Alt JM, Perera T V, Dascher CC, Behar S. Dissemination of Mycobacterium tuberculosis Is Influenced by Host Factors and Precedes the Initiation of T-Cell Immunity. Am Soc Microbiol. 2002;70(8):4501–4509.

Smith I. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Am Soc Microbiol. 2003;16(3):463-496.

Wolf AJ, Desvignes L, Linas B, et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node , not the lungs. J Exp Med Initiat. 2008;205(1):105-115. doi:10.1084/jem.20071367.

Wolf AJ, Linas B, Trevejo-nuñez GJ, Kincaid E, Tamura T, Takatsu K, et al. Mycobacterium tuberculosis Infects Dendritic Cells with High Frequency and Impairs Their Function In Vivo. J Immunol. 2017;179:2509-2519.

Lenaerts A, Barry III CE, Dartois V. Heterogeneity in Tuberculosis Pathology , Microenvironments and Therapeutic Responses. Immunol Rev. 2015;264:288–307.

Miranda MS, Breiman A, Allain S,Deknuydt F, Altare F. The Tuberculous Granuloma : An Unsuccessful Host Defence Mechanism Providing a Safety Shelter for the Bacteria? Hindawi Publ Corp Clin Dev Immunol. 2012;2012:1-14.

Gideon HP, Flynn JL. Latent Tuberculosis : What The Host “Sees”? Springer. 2013;50:202-212.

Horrocks SM, Anderson RC, Nisbet DJ, Ricke SC. Anaerobe Incidence and Ecology of Campylobacter jejuni and coli in Animals. Elsevier. 2009;15(1-2):18-25.

Duggal S, Chugh T Das, Duggal AK. HIV and Malnutrition : Effects on Immune System. Hindawi Publ Corp Clin Dev Immunol. 2012;2012:1-8.

Kashou AH, Agarwal A. Oxidants and Antioxidants in the Pathogenesis of HIV / AIDS. Open Reprod Sci Journal,. 2011;3:154-161.

CDC. National , State , and Selected Local Area Vaccination Coverage Among Children Aged 19 – 35 Months. United States: Centers for Disease Control and Prevention 2014.

Stevenson M. HIV-1 pathogenesis. Nat Publ Gr. 2003;9(7):853-860.

Zijenah LS, Katzenstein DA, Nathoo KJ, Rusakaniko S, Tobaiwa O,Gwanzura C, et al. T lymphocytes Among HIV-infected and -uninfected infants : CD4 / CD8 Ratio as A Potential Tool in Diagnosis of Infection in Infants Under The Age of 2 Years. J Transl Med. 2005;3(6):4-9.

Geijtenbeek TBH, Engering A, Kooyk Y Van. DC-SIGN , a C-type Lectin on Dendritic Cells That Unveils Many Aspects of Dendritic Cell Ciology. J Leukoc Biol. 2002;71(6):921-931.

Soilleux EJ. DC-SIGN ( dendritic cell-specific ICAM- grabbing non-integrin ) and DC-SIGN-related ( DC-SIGNR ): friend or foe ?. Biochem Soc Med Res Soc. 2003;104:437-446.

Saksena NK, Wang B, Zhou L, Soedjono M, Ho YS, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. Dovepress. 2010;2:103-122.

Vincent V, Marchal G. Tuberculosis in HIV-infected patients : a comprehensive review. Eur Soc Clin Microbiol Infect Dis. 2004;10:388-398.

Saukkonen J, Koziel H. HIV Impairs TNF- α Mediated Macrophage Apoptotic Response to Mycobacterium tuberculosis. J Immunol. 2011;179:6973-6980.

Diedrich CR, Flynn JL. HIV-1 / Mycobacterium tuberculosis Coinfection Immunology : How Does HIV-1 Exacerbate Tuberculosis ? Am Soc Microbiol. 2011;79(4):1407-1417.

Kedzierska K, Crowe SM, Turville S, Cunningham AL. The influence of cytokines , chemokines and their receptors on HIV-1 replication in monocytes and macrophages. Wiley Intersci. 2003;13:39-56.

Liebert MA, Coreceptors U, Rosas-taraco AG, Arce-mendoza AY, Caballero-olín G, Salinas-carmona MC. Mycobacterium tuberculosis. AIDS Res Hum Retroviruses. 2006;22(1):45-51.

Published

2019-07-31

How to Cite

Yona Arisena Magdalena Silitonga, Intanri Kurniati, Retno Ariza, Mukhlis Imanto, & Jhond Fatriyadi S. (2019). Tuberculosis (TBC) and Human Immunodeficiency Virus (HIV) Collaboration. Medical Profession Journal of Lampung, 9(2), 266-274. https://doi.org/10.53089/medula.v9i2.269

Issue

Section

Artikel