The Role Of Bioactive Components In Natural Compounds For Hepatitis Treatment
DOI:
https://doi.org/10.53089/medula.v14i2.934Keywords:
bioactive component, hepatitis, infection, management, natural compoundAbstract
Hepatitis virus infection is a global public health threat that causes substantial liver-related morbidity and mortality. Hepatitis is a liver infection that causes inflammation, causing swelling of the liver. This liver infection has various variants, all of which are detrimental to human health. In recent times, natural compounds have become popular to be developed as antiviral drugs to fight viral infections. These natural compounds can come from plant extraction or a combination of animal and plant extraction. Several of these compounds have shown significant effectiveness in their mechanism as antivirals against the hepatitis virus due to the presence of bioactive components in them. The mechanism of action of this bioactive component is demonstrated by disrupting the virus life cycle, replication, release, and interaction with the host. This literature study will explain strategies for treating hepatitis with these natural compounds. Recent research shows that bioactive components such as phenylpropanoids, flavonoids, xanthones, anthraquinones, terpenoids, alkaloids, and aromatics have antiviral activity against hepatitis. Therefore, based on a literature review of the latest research that reveals clinical trials of these bioactive components, this natural compound can be used as a potential treatment alternative in the management of hepatitis in the future.
References
The Lancet. Towards elimination of viral hepatitis by 2030. Lancet. 2016; 388: 308.
Zarrin A, Akhondi H. Viral Hepatitis. [Diperbarui 7 Agustus 2023]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Diakses pada 04 November 2023 pukul 12.24 WIB. Tersedia di: https://www.ncbi.nlm.nih.gov/books/NBK556029/#
González ME, González VM, Montaño MF, Medina GE, Mahadevan P, Villa C, et al. Genome-wide association analysis of body conformation traits in Mexican Holstein cattle using a mix of sampled and imputed SNP genotypes. Genet Mol Res. 2017;16(2). doi:10.4238/gmr16029597
Sinn DH, Cho EJ, Kim JH, Kim DY, Kim YJ, Choi MS. Current status and strategies for viral hepatitis control in Korea. Clin Mol Hepatol. 2017;23(3):189-195. doi:10.3350/cmh.2017.0033
MacLachlan JH, Cowie BC. Hepatitis B virus epidemiology. Cold Spring Harb Perspect Med. 2015;5(5):a021410. doi:10.1101/cshperspect.a021410
Rizzetto M. Hepatitis D Virus: Introduction and Epidemiology. Cold Spring Harb Perspect Med. 2015;5(7):a021576. doi:10.1101/cshperspect.a021576
Roy A, Datta S. Medicinal Plants against Ischemic Stroke. Curr Pharm Biotechnol. 2021;22(10):1302-1314. doi:10.2174/1389201021999201209222132
Rabiei Z, Bigdeli M, Lorigooini Z. A Review of Medicinal Herbs with Antioxidant Properties in the Treatment of Cerebral Ischemia and Reperfusion. Journal of Babol University of Medical Sciences. 2015,17: 47-56.
Centers for Disease Control and Prevention. Hepatitis A FAQs for health profes- o sionals. 2016. Diakses pada 23 November 2023 pukul 14.56 WIB. Tersedia di: http://www.cdc.gov/hepatitis/HAV/HAVfaq.htm.
Ringelhan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. Philos Trans R Soc Lond B Biol Sci. 2017 Oct 19;372(1732):20160274. doi: 10.1098/rstb.2016.0274.
Netter HJ, Barrios MH, Littlejohn M, Yuen LKW. Hepatitis Delta Virus (HDV) and Delta-Like Agents: Insights Into Their Origin. Front Microbiol. 2021;12:652962. doi:10.3389/fmicb.2021.652962
Doceul V, Bagdassarian E, Demange A, Pavio N. Zoonotic Hepatitis E Virus: Classification, Animal Reservoirs and Transmission Routes. Viruses. 2016;8(10):270. doi:10.3390/v8100270.
Blasco-Perrin H, Madden RG, Stanley A, et al. Hepatitis E virus in patients with decompensated chronic liver disease: a prospective UK/French study. Aliment Pharmacol Ther. 2015;42(5):574-581. doi:10.1111/apt.13309
Cai MZ, Qin G. Research advances in anti-Hepatitis B virus drugs. Clin. Gastroenterology Hepatology. 2019,35(10):2302–2307. doi:10.3390/ph14050417.
Yao XC, Xiao X, Huang BK, Xu ZY. Molecular docking and in vitro screening of active anti-Hepatitis B virus components from Abrus cantoniensis. Chin. J. Clin. Pharmacol. 2019,35(5): 439–441.
Solati K, Heidari-Soureshjani S, Luther T, Asadi-Samani M. Iranian medicinal plants effective on sexual disorders: A systematic review. Int. J. Pharm. Sci. Res. 2017,8(6): 2415–2420.
Roy A, Roy M, Gacem A, Datta S, Zeyaullah M, Muzammil K, Farghaly TA, Abdellattif MH, Yadav KK, Simal-Gandara J. Role of bioactive compounds in the treatment of hepatitis: A review. Front Pharmacol. 2022,13:1051751. doi: 10.3389/fphar.2022.1051751.
Jiang ZY, Liu WF, Zhang XM, Luo J, Ma YB, Chen JJ. Anti-HBV active constituents from Piper longum. Bioorg Med Chem Lett. 2013;23(7):2123-2127. doi:10.1016/j.bmcl.2013.01.118.
Zeng FL, Xiang YF, Liang ZR, et al. Anti-hepatitis B virus effects of dehydrocheilanthifoline from Corydalis saxicola. Am J Chin Med. 2013;41(1):119-130. doi:10.1142/S0192415X13500092
Parvez MK, Al-Dosari MS, Alam P, Rehman M, Alajmi MF, Alqahtani AS. The anti-hepatitis B virus therapeutic potential of anthraquinones derived from Aloe vera. Phytother Res. 2019;33(11):2960-2970. doi:10.1002/ptr.6471
Cao TW, Geng CA, Ma YB, et al. Chemical constituents of Swertia delavayi and their anti-hepatitis B virus activity. Zhongguo Zhong Yao Za Zhi. 2015;40(5):897-902.
Zhou XL, Wen QW, Lin X, et al. A new phenylethanoid glycoside with antioxidant and anti-HBV activity from Tarphochlamys affinis. Arch Pharm Res. 2014;37(5):600-605. doi:10.1007/s12272-013-0219-y
Zhao Y, Geng CA, Chen H, et al. Isolation, synthesis and anti-hepatitis B virus evaluation of p-hydroxyacetophenone derivatives from Artemisia capillaris. Bioorg Med Chem Lett. 2015;25(7):1509-1514. doi:10.1016/j.bmcl.2015.02.024
Joshi SS, Howell AB, D'Souza DH. Reduction of Enteric Viruses by Blueberry Juice and Blueberry Proanthocyanidins. Food Environ Virol. 2016;8(4):235-243. doi:10.1007/s12560-016-9247-3.
Geng CA, Huang XY, Chen XL, et al. Three new anti-HBV active constituents from the traditional Chinese herb of Yin-Chen (Artemisia scoparia). J Ethnopharmacol. 2015;176:109-117. doi:10.1016/j.jep.2015.10.032
Geng CA, Yang TH, Huang XY, et al. Anti-hepatitis B virus effects of the traditional Chinese herb Artemisia capillaris and its active enynes. J Ethnopharmacol. 2018;224:283-289. doi:10.1016/j.jep.2018.06.005
Battistini R, Rossini I, Ercolini C, et al. Antiviral Activity of Essential Oils Against Hepatitis A Virus in Soft Fruits. Food Environ Virol. 2019;11(1):90-95. doi:10.1007/s12560-019-09367-3.
Wang HL, Geng CA, Ma YB, Zhang XM, Chen JJ. Three new secoiridoids, swermacrolactones A-C and anti-hepatitis B virus activity from Swertia macrosperma. Fitoterapia. 2013;89:183-187. doi:10.1016/j.fitote.2013.06.002.
Cao TW, Geng CA, Ma YB, et al. Chemical constituents of Swertia delavayi and their anti-hepatitis B virus activity. Zhongguo Zhong Yao Za Zhi. 2015;40(5):897-902.
Luthra R, Roy A, Pandit S, Prasad R. Biotechnological methods for the production of ginsenosides. South Afr. J. Bot. 2021, 141: 25–36. 10.1016/j.sajb.2021.04.026.
Cao J, Han J, Xiao H, Qiao J, Han M. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics. Nutrients. 2016;8(12):762. Published 2016 Dec 14. doi:10.3390/nu8120762
Gader AG, Alhaider AA. The unique medicinal properties of camel products: A review of the scientific evidence. J. Taibah Univ. Med. Sci. 2016,11:98–103. 10.1016/j.jtumed.2015.12.007
Kassem AF, Batran RZ, Abbas EMH, Elseginy SA, Shaheen MNF, Elmahdy EM. New 4-phenylcoumarin derivatives as potent 3C protease inhibitors: Design, synthesis, anti-HAV effect and molecular modeling. Eur J Med Chem. 2019;168:447-460. doi:10.1016/j.ejmech.2019.02.048
Behçet A. (2014). The source-synthesis-history and use of atropine. J. Acad. Emerg. Med. 13, 2–3. 10.5152/jaem.2014.1120141
Jie XX, Geng CA, Huang XY, et al. Five new secoiridoid glycosides and one unusual lactonic enol ketone with anti-HBV activity from Swertia cincta. Fitoterapia. 2015;102:96-101. doi:10.1016/j.fitote.2015.02.009
Joshi SS, Su X, D'Souza DH. Antiviral effects of grape seed extract against feline calicivirus, murine norovirus, and hepatitis A virus in model food systems and under gastric conditions. Food Microbiol. 2015;52:1-10. doi:10.1016/j.fm.2015.05.011
Steinmann J, Buer J, Pietschmann T, Steinmann E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol. 2013;168(5):1059-1073. doi:10.1111/bph.12009
Lee MH, Lee BH, Lee S, Choi C. Reduction of hepatitis A virus on FRhK-4 cells treated with Korean red ginseng extract and ginsenosides. J Food Sci. 2013;78(9):M1412-M1415. doi:10.1111/1750-3841.12205
Zhang ZQ, Li SF, Zhang LW, Chao JB. Chemical constituents from flowers of Wikstroemia chamaedaphne and their anti-Hepatitis B virus activity. Chin. Traditional Herb. Drugs, 2017,48 (7):1292–1297. 10.7501/j.issn.0253-2670.2017.07.005
Huang SX, Mou JF, Luo Q, et al. Anti-Hepatitis B Virus Activity of Esculetin from Microsorium fortunei In Vitro and In Vivo. Molecules. 2019;24(19):3475. Published 2019 Sep 25. doi:10.3390/molecules24193475
Mathayan M, Jayaraman S, Kulanthaivel L, Suresh A. Inhibition studies of HBV DNA polymerase using seed extracts of Pongamia pinnata. Bioinformation. 2019;15(7):506-512. Published 2019 Jul 31. doi:10.6026/97320630015506
Tsukamoto Y, Ikeda S, Uwai K, et al. Rosmarinic acid is a novel inhibitor for Hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. PLoS One. 2018;13(5):e0197664. Published 2018 May 21. doi:10.1371/journal.pone.0197664
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Medical Profession Journal of Lampung
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.